

Remix & high performance eCommerce.

With

Sébastien Morel
CTO at Crystallize

󰞦 Backend/DevOps developer since 2003

🥖 French living in California

🧬 Open Source Knight & Package Maintainer

🍼 Dad of a 1-year old

💯 Millisecond hunter

Plopix
San Francisco, CA

What’s ? A Complete Commerce Layer
An Headless eCommerce Toolbox. We got your back(end).

CMS

Performance basics

Performances
Best practices

- Core Web Vitals
- Largest Contentful Paint, LCP: should be less than 2.5s
- First Input Delay, FID: should be under 100ms
- Cumulative Layout Shift, CLS: visually stable and less than 0.1

- Frontend metrics
- First Contentful Paint, FCP: under 1.8sec
- Time to Interactive, TTI: within 50ms
- Total Blocking Time, TBT: FCP-TTI, under 300ms
- Speed Index: under 1.3s

Performances
Best practices

- Server Side
- Time to First Byte, TTFB: under 600 ms
- Minification, packing, compression, etc.
- Properly sized images in the good format
- Removed unused “everything”
- Use HTTP 2

- Preload, etc.
- Use the edge
- Use HTTP Cache
- Asynchronous

Got your back!

What about ecommerce projects?
How are they different from other projects?

Performance wise

Everything is dynamic

Key components
When building an ecommerce

- Catalogue
- Product variations
- Stock
- Prices
- Sales
- Discount
- Cart
- Order Management
- Search

Back to the standard of the web
Core concepts

- Rendering
- SSR?, SSG?, SPA?

- HTTP Cache
- Browser
- Reverse Proxies/CDN, ESI?
- Expiration/Purge strategies

- Architecture
- Queues and workers
- Asynchronous

Rendering
Strategy

- SSG is not adapted for millions of pages/products
- SPA means downloading a big shell for the app and it’s bad for SEO

and first load
- SSR enables HTTP caching and dynamism

- A progressive approach is key

Remix is really good for e-commerce

HTTP Cache

HTTP Cache, using the Edge
Strategy

- Caching is valid if we can use Long TTL while being dynamic
- Expiration strategy is key

- Browser HTTP Cache can be short
- Shared cache HTTP Cache must be long

- We need to protect the backend, and respond from the edge as
much as we can

The goal is to attain more that 95% hit ratio.

HTTP Cache
With Remix

3 situations (besides medias)

- Data loading (Fetch)
- First page rendering (server side)
- Page chunks (scripts)

Browser HTTP Cache
With Remix

Page chunk (scripts)

- Handle by Remix
- Immutable!

HTTP Cache
With Remix

First page rendering (server side)

 don’t forget stale-while-revalidate=XXX

HTTP Cache
With Remix

Data loading
(Fetch)

How do you make it dynamic?
Event driven HTTP Cache expiration

Event driven HTTP Cache expiration
Purging

What should be purged?

- URL? Which one?
- All on them?
- How do you the URL to purge?

Event driven HTTP Cache expiration
Purging

Purge by Headers!
Tag your responses, so you can purge only what you want!

Event driven HTTP Cache expiration
Purging

Context:

- Application (chunks) are immutable (per build)
- SSR Pages and Data are tagged and cached
- You have an event mechanism to trigger purges on

updates

/shop/my-awesome-product

/shop/my-awesome-product?_data=xxxx

HTTP/2 200 OK
Surrogate-key: product product-XYZ
Cache-Control: public, max-age=30, s-maxage=604800, stale-while-revalidate=30

Header loader already

Sidebar

Footer

User specific
Data

User specific data
Old school fetch mechanism enriched by Remix fetcher!

- Bypass the cache
- Specific to the user

- Requires 1 more request
- Combine everything

-

Use Remix Fetcher: Optimistic UI

HTTP/2
Server Push

First PR in progress: https://github.com/remix-run/remix/pull/3200

HTTP2
Server Push

No more “Inline Resources” !

- Link: </css/styles.css>; rel=preload; as=style

- Link: </css/styles.css>; rel=preload; as=style, </js/scripts.js>;
rel=preload; as=script, </img/logo.png>; rel=preload; as=image

HTTP2
Server Push

HTTP2
Server Push

Application Cache
Stock/Inventory Management

Application cache
Stock/Inventory Management

Assuming 1 warehouse, 3 different types of Stock

- What you have in the warehouse: onHand
- What has been ordered (reserved): onHold
- What is therefore available on the website (onHand-onHold)

onHold is application cache

Architecture
Don’t do anything on request

Synchronous way
Queues and Workers

1/ Buyer is on the Checkout Page

2/ Buyer places the Order

3.1/ Database Insertion

3.2/ Payment Checking
(third party)

3.3/ Email

3.4/ Stock Updates

3.5/ Cache expiration

3.6/ Other third party
Web Services Call

20ms

4/ Buyer receives confirmation

200ms

200ms

100ms

150ms

800ms

Easily > 1 sec

Asynchronous way
Queues and Workers

1/ Buyer is on the Checkout Page

2/ Buyer places the Order

3.1/ Database Insertion
3.2/ Payment Checking

(third party)

3.3/ Email

3.4/ Stock Updates

3.5/ Cache expiration

3.6/ Other third party
Web Services Call

20ms

4/ Buyer receives confirmation

20ms
3.2/ Message Insertion

in the queue
200ms

200ms

100ms

150ms

800ms

Workers

Scaling is easy!

Producers

Queues

Conclusion
Wrapping up

- Use Web Standards
- Use HTTP2, Cache and CDNs

- with expiration method
- Cache is part of your application, test it

- Include everything in your local & in your CI/CD
- User specific data can be fetched afterwards
- Asynchronous is key

- For scalability and thus performances

Quick note about ESI
Edge Side Include

Edge Side Include
With Remix

Reverse Proxy / CDN are able to fetch data (blocks that
are sub http request) and cache the result with another

TTL before to return the fully built page.
Some kind of diagram here

Edge Side Include
With Remix

Not really useful with Remix, as you can customize TTL
for each data loader and each page

It could be used outside of the Remix App layout
For a banner, the footer etc.

Mention the hydration problem

